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Abstract. The two-band model as introduced by Suhl, Matthias and Walker [Phys. Rev. Lett. 3, 552
(1959)] accounts for multiple energy bands in the vicinity of the Fermi energy which could contribute
to electron pairing in superconducting systems. Here, extensions of this model are investigated wherein
the effects of coupled superconducting order parameters with different symmetries and the presence of
strong electron-lattice coupling on the superconducting transition temperature Tc are studied. Substantial
enhancements of Tc are obtained from both effects.

PACS. 74.20.-z Theories and models of superconducting state

Shortly after the BCS theory [1] for superconductivity
was presented, Suhl, Matthias and Walker proposed ex-
tensions of this theory [2] to account for more complex
electronic band structures. Their assumption that pair-
ing might occur in various energy bands that are located
in the vicinity of the Fermi energy implied that inter-
band interactions between those bands take place in order
to assure a homogeneous superconducting state. Interest-
ingly they observed that a two-order parameter scenario
leads to an enhancement of the superconducting transi-
tion temperature as compared to a single band model.
The two-band model has since then been explored more
deeply by various groups [3–6] and has also been invoked
recently to explain high temperature superconductivity in
copper oxides [7–12] and MgB2 [13–15]. In this paper we
study new extensions of the two-band model. We investi-
gate the effect of the coexistence of a dynamic polaronic
lattice distortion with superconductivity on the supercon-
ducting transition temperature Tc. In addition we admit
for anisotropic pairing and the mixing of d- and s-wave
superconducting order parameters. In all our calculations
we start from the assumption that the pairing interactions
within the two bands considered are too weak to induce
superconductivity separately. Thus we are able to investi-
gate the effect of the interband interactions on anisotropic
superconductivity and also show how much a polaronic
distortion can influence superconductivity.
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The two band Hamiltonian we consider, in already con-
densed form, reads:

H = H0 +H1 +H2 +H12 (1)

H0 =
∑
k1σ

ξk1c
+
k1σck1σ +

∑
k2σ

ξk2d
+
k2σdk2σ (1a)

H1 = −
∑

k1k′
1q

V1(k1, k
′
1)c

+
k1+q/2↑ c

+
−k1+q/2↓ c−k′

1+q/2↓

× ck′
1+q/2↑ (1b)

H2 = −
∑

k2k′
2q

V2(k2, k
′
2)d

+
k2+q/2↑ d

+
−k2+q/2↓ d−k′

2+q/2↓

× dk′
2+q/2↑ (1c)

H12 = −
∑

k1k2q

V12(k1, k2)
{
c+k1+q/2↑ c

+
−k1+q/2↓ d−k2+q/2↓

× dk2+q/2↑ + h.c.
}
, (1d)

where H0 is the kinetic energy of the bands i = 1, 2 with
ξki = εi+εki−µ. Here εi denotes the position of the bands,
εk1 , εk2 are the corresponding energies of c and d band
with creation and annihilation operators c+, c, d+, d, re-
spectively, and µ is the chemical potential. The pairing
potentials Vi(ki, k

′
i) are assumed to be represented in fac-

torized form as Vi(ki, k
′
i) = Viϕkiψk′

i
where ϕki , ψki are

cubic harmonics for anisotropic pairing which yields for
two dimensions and on-site pairing: ϕki = 1, ψki = 1,
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extended s-wave: ϕki = cos kxa + cos kyb = γki and
d-wave: ϕki = cos kxa − cos kyb = ηki , where a, b are
the lattice constants along x and y directions. By per-
forming a BCS meanfield analysis of equation (1) those
transform to:

Hred =
∑
k1σ

ξk1c
+
k1σck1σ +

∑
k2σ

ξk2d
+
k2σdk2σ +H̄1 +H̄2 +H̄12

(2)

H̄i = −
∑
k′

i

[
∆∗

k′
i
c+k′

i↑c
+
−k′

i↓ +∆k′
i
c−k′

i↓ck′
i↑

]

+
∑
ki,k′

i

Vi(ki, k
′
i)〈c+ki↑c

+
−ki↓〉〈c−k′

i↓ck′
i↑〉 , i = 1, 2 (2a)

and for i = 2 c is replaced by d.

H̄12 = −
∑
k1,k2

[
V12(k1, k2)〈c+k1↑c

+
−k1↓〉d−k2↓dk2↑

+ V12(k1, k2)〈d−k2↓dk2↑〉c+k1↑c
+
−k1↓

+ V ∗
12(k1, k2)d+

k2↑d
+
−k2↓〈c−k1↓ck1↑〉

+ V ∗
12(k1, k2)c−k1↓ck1↑〈d+

k2↑d
+
−k2↓〉

− V12(k1, k2)〈c+k1↑c
+
−k1↓〉〈d−k2↓dk2↑〉

− V ∗
12(k1, k2)〈c−k1↓ck1↑〉〈d+

k2↑d
+
−k2↓〉

]
. (2b)

Here we assume that 〈c+k1+q/2↑c
+
−k1+q/2↓〉 =

〈c+k1↑c
+
−k1↓〉δq,0 and equivalently for the d operators.

In addition the following definitions are introduced:
∆k′

i
=

∑
ki

Vi(ki, k
′
i)〈c+ki↑c

+
−ki↓〉 together with:

Ak1 =
∑
k2

V12(k1, k2)〈d+
k2↑d

+
−k2↓〉,

Bk1 =
∑
k2

V12(k1, k2)〈c+k2↑c
+
−k2↓〉

and V ∗12 = V12.
Applying the standard technique we obtain:

〈c+k1↑c
+
−k1↓〉 =

∆̄k1

2Ek1

tanh
[
βEk1

2

]
= ∆̄k1Φk1 (3a)

〈d+
k2↑d

+
−k2↓〉 =

∆̄k2

2Ek2

tanh
[
βEk2

2

]
= ∆̄k2Φk2 (3b)

with E2
k1

= ξ2k1
+ |∆̄k1 |2 , ∆̄k1 = ∆k1 + Ak1 and E2

k2
=

ξ2k2
+ |∆̄k2 |2 , ∆̄k2 = ∆k2 + Bk2 . From this we obtain the

selfconsistent set of equations:

∆̄k1 =
∑
k′
1

V1(k1, k
′
1)∆̄k′

1
Φk′

1
+

∑
k2

V1,2(k1, k2)∆̄k2Φk2

(4a)
∆̄k2 =

∑
k′
2

V2(k2, k
′
2)∆̄k′

2
Φk′

2
+

∑
k1

V1,2(k1, k2)∆̄k1Φk1

(4b)

from which the temperature dependences of the gaps and
the superconducting transition temperature have to be
determined. If the interactions V are constants, the re-
sulting gaps are momentum independent. A more inter-
esting case is obtained by assuming the following gen-
eral momentum dependence of the intraband interactions:
Vi = g

(i)
0 + g

(i)
γ γkγk′ + g

(i)
η ηkηk′ where the first term yields

onsite pairing, the second extended s-wave pairing, and
the last term d-wave pairing. In our calculation we as-
sume that V1 is proportional to g0 while V2 is either
determined by g0 or by gη. In addition the two bands
considered are 1-dimensional in the case of the c bands
while the d-related band is 2-dimensional with the follow-
ing dispersion: εk2 = −2t(cos kxa+coskyb). The choice of
these two bands, which are already p-d hybridised, is dic-
tated from band structure calculations for cuprates [16]
where mostly a second nearest neighbour hopping term
is included for the in-plane band whereas the out-of-plane
band has only minor hybridisations with the in-plane band
which arises from plane buckling [16]. This term is ne-
glected here, but becomes effective with finite interband
interactions. The plane related Fermi surface is thus a
square which becomes rounded off by including the second
nearest neighbour hopping term. We have checked the im-
portance of this hopping term to our analysis given below
and found that it has nearly no effect on the results. In
order to apply the model also to MgB2 the in-plane hop-
ping has to be modified to account for the hexagonal layer
structure whereas the band perpendicular to it is three-
dimensional [17]. Here extensions of the above approach
are required in order to compare the results in quantitative
way also with MgB2.

As already outlined earlier, throughout this paper we
choose our values for the intraband interactions such that
both bands separately do not exhibit superconductiv-
ity. Specifically, V1 = V2 = 0.01, where V1 = Ṽ1Ns,
V2 = Ṽ2Nd. Within this scenario the selfconsistent set of
equations is solved numerically as a function of V12 =
Ṽ12

√
NsNd, where Ns, Nd are the density-of-states of

bands 1, 2, respectively. The results are shown in Figure 1
where both cases V2 ∼ g0 and V2 ∼ gη are considered.
In both cases small values of V12 are sufficient to induce
superconductivity. With increasing V12 dramatic enhance-
ments of Tc are obtained which easily exceed 100 K. In-
terestingly the d-wave component in the two component
systems has an additional Tc-increasing factor which in-
creases with increasing interband coupling strength.

This finding demonstrates that a mixed order param-
eter symmetry favours superconductivity, as opposed to
two onsite pairing interactions. It has to be mentioned
here, that a mixed order parameter symmetry is not possi-
ble on a cubic lattice, but that an orthorhombic distortion
has to be considered. By choosing a 10% orthorhombic-
ity an additional small enhancement of Tc as compared to
cubic symmetry is obtained, but the general results are
overall not affected.

The related superconducting energy gaps are shown in
Figure 2 with V12 = 0.5. Here again the effect of onsite
couplings only depresses the gaps as compared to s/d-wave
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Fig. 1. The dependence of the superconducting transition tem-
perature on the interband coupling V12 for the case of both,
V1 and V2 ∼ g0 (circles) and the case where V1 ∼ g0, V2 ∼ gη

(squares).

Fig. 2. Temperature dependences of the superconducting gaps
in meV. Squares and circles refer to ∆̄1(g0), ∆̄2(g0), while
down and up triangles are derived for ∆̄2(gη), ∆̄1(g0). The
insert shows for the latter case the ratios of the maximal gaps
to Tc versus Tc which is equivalent to varying V12. The param-
eters used throughout the paper are given in [19].

coupled gaps, and in addition a strong anisotropy of the
two gaps is observed within the mixed order parameter
system. In the insert the ratio of the gaps with respect
to Tc is shown as a function of Tc for the mixed order
parameter case only. Interestingly the s-wave gap ratio is
close to the BCS ratio, slightly increasing with increas-
ing Tc. The corresponding ratio of the d-wave gap is en-
hanced, as compared to a one band approach, and remains
nearly constant as a function of Tc with a slight decrease
at small Tc’s. The gap versus temperature behaviour is

Fig. 3. The dependence of Tc on the polaronic shift ∆*. The
squares refer to s-d coupled order parameters, while the circles
correspond to the s-s coupled case.

comparable to the conventional two-band model and fol-
lows a BCS type temperature dependence.

Finally we have investigated the question of how the
coexistence of dynamic polaronic lattice distortion with
superconductivity influences Tc. We start with the as-
sumption that for temperatures T � Tc a strong coupling
of the one-dimensional electronic band to phonons with
momentum q-dependent energy �ω takes place. This cor-
responds to modifying the first part of equation (1a) as:

H̄0 =
∑
k1σ

ξk1c
+
k1σck1σ +

∑
q

�ωqb
+
q bq

+
1√
2N

∑
q,σ,k1

g(q)c+k1+qσck1σ (bq + b+−q). (5)

Here b+, b are phonon creation and annihilation oper-
ators and g(q) is the electron-phonon coupling. Follow-
ing the procedure of reference [18] the k1-related elec-
tronic energies are renormalized by the electron phonon
coupling as: H̃0 =

∑
k1σ

(ξk1 −∆∗)c+k1σck1σ with ∆∗ =

1
2N

∑
q

(�ωq)−1|g(q)|2. The transformation to small po-

larons yields an additional exponential reduction in the
hopping integrals which is not relevant for the one dimen-
sional band considered here, but has to be included if sim-
ilar effects were discussed for the two dimensional band.
The polaronic induced density-density attraction has been
absorbed in the coupling constant V1. The q-dependence
of the electron-phonon coupling together with that of the
level shift have been treated here as integrated averaged
quantities but they are explicitly taken into account in
reference [20]. Including these modifications of the one di-
mensional electronic band in the calculation of Tc, and
considering again the above two cases, the results shown
in Figure 3 are obtained. The polaronic band shift ∆∗
first increases Tc enormously but then depresses its value
to zero with increasing band shift ∆∗. Since the magni-
tude of ∆∗ depends on the electron-phonon coupling our
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results show that small and intermediate coupling pola-
ronic distortions lead to a pronounced increase in Tc but
reduce Tc in the strong coupling limit. Physically this sit-
uation corresponds to an interplay between the interband
coupling favouring superconductivity and the lattice dis-
tortion which promotes localization. Again a strong en-
hancement of Tc is observed for the case of two different
order parameters as compared to the two s-wave order
parameter case.

In conclusion, we have investigated new aspects of
the two-band model for superconductivity by consider-
ing the influence of different order parameter symmetries
on Tc and by studying the effect of a polaronic distortion
on it. Combining s and d-wave order parameters always
enhances Tc substantially as compared to two isotropic
order parameters, since here low energy scales appear
from the d-wave channel. The interband coupling also en-
hances Tc substantially and even at moderate coupling Tc

values>100 K are obtained. A polaronic distortion favours
superconductivity as long as the corresponding electron-
phonon interaction is not too large. For intermediate to
large values of the coupling, superconductivity is rapidly
depressed. The interesting case of the coexistence of super-
conductivity with a charge density wave instability within
the above discussed scenario will be presented elsewhere
together with the discussion of the effect of band nar-
rowing on Tc. Our model with the above given choice of
bands is thought to be applicable to cuprates but has to
be modified when modelling MgB2 since here a more com-
plex band structure scheme applies. However, the results
indicate clearly that the coupling of two isotropic order
parameters, which is realized in MgB2 limits Tc in agree-
ment with experimental observations.
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